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Abstract: We consider a generalization of Stereographic Projections, to be called ”Quasi-Stereographic” Projections.
These refer to projections from compact Riemann surfaces to the a plane that intersects the surface. We will

observe behavior of functions, such as polynomials, when this projection is applied. This includes approximat-

ing integrals of functions via projecting the function onto the Riemann Sphere. We will also briefly consider
when the surface is not compactable and mention briefly about higher dimensional Quasi-Stereographic Pro-

jections.
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1. Introduction

The stereographic projection is defined as the map P : R2 → S2, where R2 is two dimensional Euclidean space

and S2 is defined as the unit sphere. Stereographic projections have been studied as a valid bijection between

the Cartesian plane and the unit sphere by many mathematicians, including Bernhard Riemann, who eventually

extended the interpretation of the stereographic projection to what it is today [1–3].

Geometrically, this projection can be described in the following way: let the unit sphere S2 sit such that its

great circle C ∈ R2. Start with the north pole, or the top vertex of the sphere. If you draw a line from the north

pole such that it intersects the sphere and the Cartesian plane at one point [4].

Our main objective is to study polynomials and other functions when mapped to compact Riemann surfaces.

In particular, we will examine the properties of integrals when mapped to the 2-sphere. Using the original

stereographic projections, we will show that it is possible to approximate improper integrals (with bounds from

(0,∞) accurately. In addition to our analysis of the stereographic projection, we will develop a suitable projection

to surfaces such as tori and other compact Riemann surfaces. A visualization of this projection can be seen in

Figure 1.
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Figure 1. Stereographic Projection (Retrieved from: imgur.com).

2. Stereographic Projections

Lemma 2.1.
(i) If the stereographic projection of a point (α, β, γ) to (X,Y ) is defined, then

(X,Y ) =
( α

1− γ ,
β

1− γ

)

(ii) If (X,Y ) ∈ R2 is an inverse stereographic projection that maps the point to (α, β, γ) ∈ S2, which is

(α, β, γ) =
( 2X

1 +X2 + Y 2
,

2Y

1 +X2 + Y 2
,

X2 + Y 2

1 +X2 + Y 2

)

Proof. (i) Let S(P ) be the stereographic projection of point P . Let L(t) represent the line that intersects the

North Pole (α, β, γ) and the Cartesian plane. Define L(0) =


0

0

1

. Because L(t) will intersect the plane at the

coordinate (α, β, 0) (for some α, β), we can define L(1) =


α

β

γ − 1

. Therefore, L(t) =


0

0

1

 +


α

β

γ − 1

 t. The

intersection between L(t) and the plane gives us that S(α, β, γ) = ( α
1−γ ,

β
1−γ ) �

(ii) The second case is analogous to the first. Given (x, y) ∈ C ∼= R2, we can define the line from

(x, y, 0) to north pole as L(t) = (0, 0, 1) + (x, y − 1)t such that L(0) = (0, 0, 1) and L(1) = (x, y, 0). This will

intersect the sphere when the relation x2 + y2 + z2 = 1 is satisfied, so we are enabled to substitute in our

parameters for x, y, and z into that equation in terms of t. We obtain, after computation,

(x2 + y2 + 1)t2 − t+
1

4
= 0.

This only has roots when when t = 2
x2+y2+1

. Plugging this back into our parameters, we obtain our desired

result.
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Corollary 2.1.
Any function will converge at the point (0, 0, 1) when inversely stereographically projected, unless it is logarithmic.

Proof. The lemma is proven because of the following statements:

lim
X→∞

2X

1 +X2 + (
∑n
i=0 aiX

i)2
= 0

lim
X→∞

2(
∑n
i=0 aiX

i)

1 +X2 + (
∑n
i=0 aiX

i)2
= 0

lim
X→∞

X2 + (
∑n
i=0 aiX

i)2

1 +X2 + (
∑n
i=0 aiX

i)2
= 1

This result holds for all real functions, with the exception of logarithmics.

Given the above lemmas, we define the north pole N(0, 0, 1) to be the point that projects towards infinity.

This projection of a point at infinity drove me to consider projecting functions onto the Riemann sphere to

integrate them if their integrals were convergent. I projected points on the function’s graph on the Cartesian

plane onto the Riemann sphere and interpolated the curve with a 5th order polynomial. I then used line integration

on the curve formed above the points to obtain an approximation for the integral on the Cartesian plane. The

integral is overestimating the area by a factor of approximately 0.5 when projecting onto the sphere (some of

the beginning points project to the equator of the Riemann sphere, which increases the value of the integral by

two-fold). Therefore, we have the following proposition:

Proposition 2.1.
Any analytic function f ’s integral with bounds from a constant to infinity and is convergent can be approximated
the following way: (∫

R

Sf dt

)
· 0.5,

m where Sf is the function f ’s inversely stereographically projected interpolated function.

This proposition has been thoroughly tested previously with several examples. First, I tested the Gaussian

integral, or the standard distribution function f(x) = e−x
2

which has a well known integral of
√
π
2
≈ 0.88623,

where x is integrated from 0 to ∞. A graph for the stereographically projected integral is provided in Fig. 2.

The full calculation is shown below, using the proposition:

0.5 ∗ ·
∫ 1

0

1.108− 0.6114x3 − 1.1358(0.5− 1.9007x− 4.002x2 + 28.3726x3 − 44.6794x4 + 22.5096x5)3 dx
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Figure 2. Line Integration.

·
∫ 1

0

√
0.9007− 8.044x+ 85.1178x2 − 178.718x3 + 112.548x4 dx

≈ 0.821275

Using Grapher on MacOS, an image of this integration is given in Figure 2

Using the same procedure as above, the Dirichlet Integral’s result is calculated to be ≈ 1.53256, while the

actual integral evaluates to be π
2
≈ 1.5708 (The Dirichlet Integral is

∫∞
0

sin x
x

dx).

Towards the future, we look to continue to improve our definition for Sf , or the stereographically projected

polynomial. Rather than claiming it as an interpolated function, we can proceed to find a stronger definition for

it using spherical coordinates.

Note that Proposition 2.1 holds for analytic functions, it will be an alternative approximation method for

improper integrals. Analytic Functions are functions that can be locally given a convergent power series.

3. Quasi-Stereographic Projections

3.1. Torus, Q1

The first Quasi-Stereographic projection involves the projection from the torus to the Cartesian plane. Let

this projection be known as the ”Q1” stereographic projection. We define it using the fundamental parallelogram,

which is the following:

Definition 3.1 (Fundamental Parallelogram).
Fix two complex numbers z0, z1 ∈ C / {0}, with z1/z0 /∈ R. We will let G be the set of points such that

G = {nTz0 +mTz1 | n,m ∈ Z},
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where Tz0(z) = z + z0. Since we then have the isomorphism G ∼= Z × Z defined by

(nTz0 +mTz1)→ (n,m).

Furthermore, the quotient manifold C/G is defined as the torus, or T2 = S1 × S1. This atlas, or map is to the
fundamental parallelogram [2].

The Q1-stereographic projection is defined as the projection from the Riemann Sphere to the fundamental

parallelogram of the unit torus (we define unit torus as (T = (z, w) ∈ C2 : |z| = |w| = 1). Since we are considering

the unit torus, its fundamental parallelogram would just be a unit square.

In short, we are scaling down from the function on the Cartesian plane to the fundamental parallelogram of

the torus (Fig. 3).

(0, 0) (1, 0)

(1, i)(i, 0)

Figure 3. Fundamental Parallelogram of Unit Torus

The simplest analogue of the Q1 quasi-stereographic projection is the projection from the unit torus’

fundamental parallelogram to the Cartesian plane. Since this parallelogram is just a square in this special case,

we can just assume that (0, 0) maps to itself, (i, 0) maps to our projection point at infinity on the y-axis, (0, 1)

as our projection point at infinity on the x-axis.

We utilized a Q1 stereographic projection on an analog of the Mobius transformation. A Mobius transforma-

tion is referred to as the stereographic projection from a sphere to a plane, and is then stereographically projected

to another sphere. This is a type of linear transformation in the following way:

z → az + b

cz + d
,

where ad − bc 6= 0. In this study, we attempted a Mobius transformation from the first Riemann sphere to a

unit torus instead, we will consider a Mobius transformation from the first Riemann sphere to the unit torus. To

describe it in a different way, the sphere is ”wrapping” R2 onto its surface.

Refer to Fig. 4 for a visualization of this transformation. We utilized our topographical definition of the

torus (fundamental parallelogram) and perform our transformation, for simplicity, scaling down the sphere to a

parallelogram. Since it can be thought of as a 1 by 1 square of a grid, It is a scaling, so we can project from

the Riemann sphere a scaled down version of the Cartesian plane (such that the real and imaginary unit of each
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Figure 4. Mobius Transformation (Retrieved from: math.umn.edu).

number is between 0 and 1). We are simply representing our point at infinity in the x-direction as (i, 0). This

projection will simply be the graph of the function on the Cartesian plane, but every point at infinity will contain

an endpoint. Functions on R2 that have a limit at infinity will have an endpoint at (1, i). Otherwise, the function

will converge at its limit. If the function has a limit of 0, then the function will converge at the point (1, 0). To

restate, the limit at infinity will be a point on the transformed function. Let us take the function on the Cartesian

plane f(X) = Y . The graph of the transformation is shown below in Fig. 5.

f(Z) = W

Re

Im (1, i)

Figure 5. Fundamental Parallelogram of Unit Torus

To analyze this graph on the torus, we can topologically morph the parallelogram back into a torus. Folding

this back into a cylinder would yield a line being curved along from the base to the top, making a full revolution

about the cylinder. When the top and bottom are connected, it will be a stretched out contour that curves around

the torus four times symmetrically. This finding is significant because it shows a way of projecting a function

onto a torus.

Using our alternative definition of a Mobius transformation, we are wrapping the plane into a torus. Thus,

as we take other tori with wider fundamental parallelograms, this wrapping will be more stretched out. For tori

with equal parameters, the wrapping should be symmetric. Logically, the formation of the Quasi-Stereographic

projection is understandable.
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3.2. Non-Compact Riemann Surfaces, Qn

Non-Compact Riemann surfaces are more tough to deal with, for these are not closed and the surface itself

will be part of the Complex plane. But, Quasi-Stereographic projections for non-compact Riemann surfaces are

nonexistent. This is because of the very fact that we will need to take the inside of the sphere to be part of

the complex plane. Higher dimensional surface as well are tougher to deal with as well, for they are harder to

visualize and to create the projection for.

4. Conclusion

In this paper, we have discussed our approximation for integrals of convergent analytic functions, which

involved taking the line integral of our inversely stereographically projected on the Riemann sphere. Next, we

developed a new Q1 stereographic projection that projects from R2 to the unit torus. To do so, we consider the

torus’ fundamental parallelogram. Although we do not cover other tori with not as symmetric parallelograms,

the projection can be performed the same way (except the coordinates of the parallelogram and the elasticity of

the graph would be different).

A potential application of the infinite integral approximation is in physics and statistics, with wave density

functions. We see that the wave density function’s (Ψ) integral from
∫∞
−∞Ψ ∗Ψ dx = 1. This is important when

we want to approximate the probability of an electron being located somewhere in its electron cloud. In the

future, we hope to utilize the Q1-stereographic projection to prove a theorem in mathematics or any parallel field.

We will continue to extend and to crystallize our understanding of our projection at the same time.
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